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Abstract

This paper proves that the task of computing near�optimal weights for sigmoidal
nodes under the L� regression norm is NP�Hard� For the special case where the sigmoid
is piecewise�linear we prove a slightly stronger result� namely that computing the optimal

weights is NP�Hard� These results parallel that for the one�node pattern recognition
problem� namely that determining the optimal weights for a threshold logic node is also
intractable� Our results have important consequences for constructive algorithms that
build a regression model one node at a time� It suggests that although such methods
are �in principle� capable of producing e�cient size representations �e�g� see Barron
����	�
 Jones �������� �nding such representations may be computationally intractable�
These results holds only in the deterministic sense� that is they does not exclude the
possibility that such representations may be found e�ciently with high probability� In
fact it motivates the use of heuristic and
or randomized algorithms for this problem�

Keywords� nonlinear regression� sigmoids� piecewise�linear regression� multilayer networks�
computational complexity

� Introduction

This paper is concerned with the computational complexity of the training problem for neural
networks whose hidden layer nodes perform the familiar a�ne projection of the input followed
by a nonlinear activation function� that is

y � ��w� �
dX

i��

wixi�
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where fxig are the node inputs� fwig are the node parameters �or weights�� and ���� is the
node activation function �typically sigmoidal�	 Experience has shown that the training process
for such networks can be computationally expensive� especially for larger problems with high
dimensional inputs and
or large data sets	 It remains an open problem to characterize the
intrinsic complexity of the training problem in its full generality� but numerous restricted
results are available� most suggesting the intractability of the problem	 These results depend
heavily on the speci�cs of the problem de�nition� e	g	 the network topology� the type of
activation function�s�� the characteristics of the training data� the training criterion� and the
question being asked	 Many of these results are developed under the framework of the loading
problem� de�ned by Judd ����
�	

The Loading Problem� Given a network speci�cation �i	e	 a description of the topology�
the node activation functions� etc	� and a set of training samples S � fxi� yig

N
i��� does there

exist a set of weights for which the network produces the correct output on all N training
samples �i	e	 can the data be �loaded� onto the network�� More precisely� if we let f�x�
denote the function performed by the network� does there exist a set of weights for which
f�xi� � yi for all i � �� �� ���� N�

Note that the loading problem is posed as a decision problem	 It does not ask for the produc�
tion of weights� merely for a yes or no answer as to their existence	 This is typical of decision
problems which are abstracted from optimization problems	 The most important di�erence
between the loading problem and a typical situation encountered in practice however� is that it
asks the question about a zero error solution	 In practice we often expect the �best� solution
to have nonzero error	 Nevertheless� it would appear that answering the question for the zero
error case is no harder than for the minimum error case� and so it can be argued that the
complexity of loading is important	

Most results for the loading problem assume a threshold logic node �i	e	 a node with
hard�limiting activation function� at the output	 This makes the optimization problem com�
binatorial	 The target outputs� yi� are thus taken from f
� �g so that zero error is possible	
It is also convenient to work with binary input data� i	e	 x � f
� �gd	 Under this setting the
following results are characteristic of those produced to date	 Judd showed that the loading
problem is NP�Complete for a class of sparsely connected threshold logic networks with a
special �nonconventional� topology Judd ����
�	 Blum and Rivest ������ proved that loading
is NP�Complete for what many consider to be the simplest possible one hidden layer network�
a ��node threshold logic network with two nodes in the hidden layer	 H�o�gen ������ proved
that loading a ��node network with continuous sigmoid activations is NP�Hard under the
restriction of binary weights	 DasGupta et al� ������ proved that loading a ��node network
with piecewise�linear activations in the hidden layer is NP�Complete	 �S�ima ������ proved
that loading a ��node network with continuous sigmoidal activations in the hidden layer is
NP�Hard under the constraint that the output bias weight is zero	 Finally� Lin and Vitter
������ proved that loading is NP�Complete for the smallest possible threshold logic network

�



with cascade architecture �i	e	 a ��cascade network�	
Not all complexity results have been developed under the loading framework	 For example�

using a re�nement of the PAC�learning framework� Maass ������ describes architectures for
which e�cient learning algorithms do exist	 Maass�s networks map real�valued inputs to real�
valued outputs and use piecewise�polynomial activation functions	 These activation functions
di�er from the piecewise�linear activations considered later in this paper �and in DasGupta
et al� ������� Jones ������� in that they are discontinuous and may have many piecewise
components	

In addition� Jones ������ has shown that training a ��node network with sigmoidal hidden
layer nodes and a linear output node is NP�Hard	 His proof requires that the sigmoidal
activation functions in the hidden layer satisfy certain monotone and Lipschitz conditions	
The network maps real�valued inputs to real�valued outputs� and the NP�Hardness result
applies under two di�erent criterion� the L� error norm and the minimax error norm	 Jones
also shows that the problem is NP�Complete under the additional assumptions that either �
is piecewise�linear and the L� error is used or� � is piecewise�rational and the minimax error
norm is used	

The results above suggest that the training problem for most neural network models is
intractable	 Baum ������ points out however that the intractability may be due �in part� to
the fact that the network architectures are �xed during training	 He suggests that the learning
problem may be intrinsically easier if we are allowed to add nodes and
or weights during the
process	 Algorithms of this type are typically called constructive algorithms	 In most cases
the constructive approach cannot guarantee that the resulting network is of minimal size� but
in many cases we can expect the size to be reasonable �more on this below�	 The hope then is
that learning can be accomplished more e�ciently if it is performed one node at a time	 The
tractability of this approach hinges on the complexity of training for a single node	

In this context it is interesting to note that the loading problem can be solved in polynomial�
time for a threshold logic node �e	g	 using linear programming�	 However� if the answer to
the loading problem is �no� �i	e	 zero error is not achievable�� then the problem of �nding
the optimal node �i	e	 the one with fewest errors� is computationally intractable �e	g	 see Siu
et al� �������	 A careful study of this problem reveals that the intractability stems from the
dimensionality of the input	 That is� if the input dimension is �xed then the problem admits
a polynomial�time solution �although the degree of the polynomial scales with the dimension�
so it may not be practical for problems of even modest dimension�	

There are few results concerning the complexity of learning for a single node with real�
valued output �e	g	 a regression node�	 If the node is linear then it typically admits an e�cient
solution� either in the form of an algorithm for systems of linear equations� or in the form
of a Linear Programming problem	 But little is known about the complexity when the node
is nonlinear	 This is the issue addressed here	 We prove a complexity result for the popular
class of sigmoidal nonlinearities	

To address the issue of size mentioned above� and to further motivate the results in this
paper� we consider the work of Barron ������ ����� and Jones ������	 Their results pertain to
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one�hidden layer networks with sigmoidal activations in the hidden layer and a linear output	
Barron ������ ����� has shown that when the function being modeled by the network belongs
to a particular class of continuous functions� �C � the generalization error for the network
�under the expected L� norm� is bounded by

O
�
�

n

�
�O

�
nd logN

N

�

where n is the number of hidden layer nodes� d is the dimension of the input� and N is
the number of training samples	 The �rst term� O���n�� is the approximation error and is
due to the inability of a �nite�size network to produce a zero�error model for functions in
�C 	 The second term� O�nd logN�N�� is the estimation error and is due to the fact that the
model must be inferred from only a �nite number of data samples	 Of particular interest
is the O���n� bound on approximation error� which is a signi�cant improvement over the
O���n��d� form achieved with �xed basis function models Barron ������	 It has been shown
that this O���n� bound can be achieved constructively� that is by designing the nodes one at
a time Barron ������� Jones ������	 The proof of this result is itself constructive� and thus
provides a framework for the development of an algorithm which can �in principle� achieve
this bound	 It starts by �tting the �rst node to the original function	 The second node is then
�t to the residual from the �rst approximation� and the two are combined to form the second
approximation	 This process of �tting a node to the current residual and then combining it
with the previous approximation continues until a suitable size model is found	 The proof that
this algorithm can achieve an O���n� rate of approximation relies on the assumption that the
node produced at each step is within O���n�� of the optimum Barron ������� Jones ������	 In
practice a node may fall short of the optimum due to the error introduced by a �nite training
set	 However� using the estimation error result for n � �� if the number of training samples
satis�es N� logN �  �n�d� then� with perfect learning� the error will �on average� satisfy
the O���n�� tolerance making the O���n� rate achievable	 Perfect learning implies that the
training procedure is able to produce the optimal set of weights	 Thus� if this training problem
can be solved e�ciently� then we have conditions under which Barron�s approximation rate
could be realized in practice	 In this setting however� the e�ciency of training remains an
open problem Barron ������	 This paper takes a step towards addressing this problem by
answering this question in the negative for sigmoidal nodes that are trained using the L�
norm	 Note that the Jones
Barron results hold under the L� norm� while our hardness result
uses the L� norm	 It is not clear that the Jones
Barron results can be extended to the L�
norm� although qualitatively similar results are likely	 On the other hand� even though we
have not yet discovered a hardness proof using the L� norm� the results in this paper suggest
very strongly that such a proof exists	
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� Problem Statement and Main Result

The precise computational problem that we wish to address is de�ned as follows	

Approximately Optimal Sigmoid �APP�OPT���� Let � � � � "
� �# be an activation
function� Given a regression data set S � f�xi� yi�g with N pairs �xi� yi� � �

d��� does there
exist a set of parameters w � �d� w� � � so that

E� �
NX
i��

jyi � ��wTxi � w��j

is strictly within � of its in�mum�

The following theorem gives the main result	

Theorem � For any non�decreasing function �� APP�OPT�� is NP�Hard�

Note that it is essential to require only approximate optimality since an in�mum may not
be achievable with �nite weights	 This is true for example with the smooth sigmoid that is
commonly used in neural network models	 This characteristic is not true of all � however�
and in such cases it may be possible to provide an even stronger result	 In section � we show
that when � is piecewise�linear� a similar hardness result is achievable under the condition of
exact optimality	

The proof of Theorem � uses a reduction from the Maximum Linearly Separable Subset
�MLSS� problem which we now describe	 Let us de�ne a pattern recognition data set to be a
set of labeled binary patterns P � f�xi� �i�g such that xi � f
� �gd are the pattern vectors
and �i � f���g are the labels	 Let P� � fxi � �i � �g and P� � fxi � �i � �g be the
subsets of patterns from the two pattern classes	 A linear dichotomy of P is a partitioning of
the pattern vectors into two �disjoint� subsets according to

L� � fxi � a
T
l xi � a�g

L� � fxi � a
T
l xi � a�g

���

This dichotomy is characterized by the �d� ���dimensional parameter vector aT � "a�� a
T
l # �

"a�� a�� ���� ad# � �d��	 A set P is said to be linearly separable if and only if there exists a
parameter vector a� such that L� � P� and L� � P�	 Determining the linear separability
of P can be accomplished in polynomial�time �e	g	 using linear programming�	 If P is
not linearly separable however� determining the best linear partitioning is a computationally
intractable problem	 For example� let us de�ne a maximum linearly separable subset of P to
be a subset P � � P that is linearly separable and has maximum cardinality	 The decision
version of this problem� stated below� is NP�Complete� e	g	 see Siu et al� ������	

Maximum Linearly Separable Subset �MLSS�� Given a pattern recognition data set P �
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and a positive integer K 	 jP j� does there exist a linearly separable subset P � � P with
jP �j � K�

Now� the proof of Theorem � is accomplished by providing a polynomial�time reduction
from MLSS to APP�OPT��	 We use a Turing reduction that makes a single call to an oracle
for APP�OPT��	 The reduction is comprised of the three steps shown below	

Reduction� MLSS 	P APP�OPT��	

�	 Transform the pattern recognition data set P into a regression data set S by mapping
each pattern vector in P directly to a regression vector in S� and each label in P to a
response variable in S according to

yi �

�
�� �i � �

� �i � �

�	 Call the oracle for APP�OPT�� with S as the input	 The oracle returns �near��optimal
parameters w� w�	

�	 Use the parameters from Step � to compute the set of projected samples

Z � fzi � zi � wTxi � w�g

Position m 	 N step functions to pass between the m 	 N distinct values of zi and let
fZ�� Z�gj be the partition induced by the j

th step function	 Let Mj be the number of
patterns that are correctly labeled by the jth step function� and set M� � maxjMj	 If
M� � K then answer �yes�� otherwise answer �no�	

Proof of Correctness for Reduction�
First note that the reduction can be carried out in polynomial�time �it is linear in the size of
the input�	 The heart of the proof is in showing that when presented with pattern recognition
data� the oracle for APP�OPT�� will return a solution from which the maximum linearly
separable subset can be extracted as in step �	 This relies on two simple observations about
the relationship between step functions and any non�decreasing� bounded �	

The �rst observation is that � is equivalent to a convex combination of step functions on
any �nite set	 That is� for any �nite set Z 
 � there exist step functions s�� ���� sm and convex
coe�cients ��� ���� �m such that

��z� �
mX
i��

�isi�z� ���

for all z in Z	 Furthermore� m 	 jZj will su�ce� since we can choose the steps to occur to
the left of the smallest point and between the points	
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The second observation is that � can approximate a step function	 That is� for any �nite set
Z � �� for all � � 
� and for all step functions s� there is an a � � for which j��az��s�z�j � �
for all z in Z	 Thus� if the regression problem presented to � requires a step function as its
optimal solution �as it does in the reduction above�� then � can approximate that solution
arbitrarily closely	

The following lemma formalizes these observations and provides the essential link needed
to complete our proof	

Lemma � Given any APP�OPT�� problem for which y�� ���� yN � f
� �g� and any w� w�� there
is a step function s and real constants a� b such that

NX
i��

jyi � s�awTxi � b�j 	
NX
i��

jyi � ��wTxi � w��j

Proof� To prove this we use ��� to writePN
i�� jyi � ��wTxi � w��j �

PN
i�� jyi �

Pm
j�� �jsj�w

Txi � w��j

�
PN

i��

�
yi � ��yi � ��

Pm
j�� �jsj�w

Txi � w��
�

�
PN

i�� yi �
Pm

j�� �j
PN

i����� �yi�sj�w
Txi � w��

�
PN

i�� yi �
Pm

j�� �jJj

���

where

Jj �
NX
i��

��� �yi�sj�w
Txi � w�� �!�

Let j� � argminj Jj	 Clearly� since the �j�s are convex coe�cients� ��� can be minimized by
setting �j� � � and the other coe�cients to zero	 This gives

NX
i��

jyi � ��wTxi � w��j �
NX
i��

jyi � sj��w
Txi � w��j

which proves the lemma	 QED
Note that if we set � equal to a step function s� then E� is an integer whose value is equal

to the number of samples for which s disagrees with the training set	 Thus� for step functions
E� can change only by integer values	

Now consider the model returned by the oracle in Step � of the reduction above	 The
corresponding value of E� is within � of the in�mum and by Lemma �� the corresponding step
function chosen in Step � has error within � of its in�mum	 Since the step function error can
change only by an integer� the step function produced in Step � must be optimal	 That is�
the value of E� for this step function is in�mal over all functions	 Thus� the partition induced
in Step � minimizes disagreements with the training set and therefore maximizes Mj�	 This
completes the proof of correctness for the reduction	 QED

It is worth noting that the above result can be easily extended to � with any other bounded
range by simply changing the labels yi in the reduction	
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� Piecewise�linear Sigmoids

In this section we consider the special case where � is piecewise�linear	 Although this activa�
tion is less popular than the smooth sigmoid� its piecewise nature can be exploited to develop
more e�cient heuristic algorithms for learning� e	g	 see Breiman and Friedman ����!�� Hush
and Horne ������� Staley ������	 It is also simpler to evaluate in that it requires only addi�
tion� multiplication and comparison operations� in contrast to the trigometric function that
must be evaluated for the smooth sigmoid	 In addition� it provides a unique connection be�
tween sigmoid functions and linear splines� which are also commonly used in regression �a
piecewise�linear sigmoid can be formed from two linear splines�	

The piecewise�linear sigmoidal �PWLS� performs a mapping � � �d � � according to

��x� �

�	

	�
w�� wT

l x� w� � w�

wT
l x� w�� w� � wT

l x� w� � w�

w�� wT
l x� w� 	 w�

���

where xT � "x�� x�� ���xd# � �
d is the input vector� and

wT � "w��w
T
l � w�� w�# � "w�� w�� ���� wd� w�� w�# � �

d��

is the parameter vector that characterizes the node function �	 An example of the surface
formed by a PWLS node for a two�dimensional input is shown in Figure �	 It is comprised of
three hyperplanes joined pairwise continuously at two hinge locations	 These hinges induce
linear partitions on the input space that divide the space into three regions as shown	 Note
that the parameterization in ��� allows complete $exibility in the placement of the PWLS
surface in �d� i	e	 it can have arbitrary orientation� scale and o�set	

The de�nition above di�ers from other common de�nitions in that the $at portions are
not restricted to the values 
 and �	 In a multilayer network �with linear output� where all
nodes are trained simultaneously� the 

� restrictions do not present a limitation� since the
node outputs are scaled and shifted by weights in the subsequent layer	 But when the hidden
layer nodes are trained individually to match a target with arbitrary scale and o�set �as they
are in constructive learning algorithms�� the 

� restrictions are not appropriate� hence the
de�nition above	

Note that the PWLS node partitions the input vectors into three subsets S�� Sl and S�
given by

S� �
n
xi � w

T
l xi � w� � w�

o
Sl �

n
xi � w� 	 wT

l xi � w� 	 w�

o
S� �

n
xi � w

T
l xi � w� 	 w�

o ���

In Hush and Horne ������ we show that there are %�Nd��� such partitions	 Further� with
the partition �xed� the problem of learning the optimal weights can be cast as either a Linear

�Note that by de�nition w
�

� w� �i�e� they cannot be equal��
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Figure �� A piecewise�linear sigmoidal function in two dimensions	

Programming problem under the L� norm� or a Quadratic Programming under the L� norm	
This suggests that the learning problem for this type of node is inherently combinatorial	 It is
also apparent that the complexity of learning stems from the exponential number of partitions
�since� under reasonable assumptions� both LP and QP can be solved in polynomial�time�	

The training problem considered here di�ers from that in the previous section in that we
ask for an optimal rather than near�optimal solution	
Optimal Piecewise�linear Sigmoid �OPWLS��Given a regression data set S � f�xi� yi�g

N
i��

and a PWLS node de�ned in �	
� determine the parameter vector w� that minimizes E�� i�e�

w� � arg min
w��d��

E�

Theorem � The OPWLS problem is NP�Hard�

Proof� The proof of this theorem is the same as for Theorem �� except that Step � of the
reduction calls the oracle for OPWLS which� by de�nition� returns weights that minimize E�	
In this case the PWLS node will achieve the same minimal value of E� as the step function
selected in Step �	 That is� since there is always a measurable interval between distinct
samples� the PWLS node can dichotomize the data optimally using �nite weights �e	g	 by
partitioning samples into S� and S� and leaving Sl empty�� and this solution achieves the
lower bound on E� set by the step function	 QED
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� Summary and Conclusion

This paper has shown that determining the weights that optimize the L� regression error for
a sigmoid node is NP�Hard	 Consequently it suggests that the problem of producing e�cient
size representations with constructive algorithms that build a regression model one node at a
time may be computationally intractable	 This result applies only in the deterministic sense�
that is it does not exclude the possibility of �nding e�cient size representations in polynomial�
time with high probability	 In fact� our result motivates the use of heuristic and
or randomized
algorithms for this problem	

The results in this paper suggest that a similar hardness result may exist for the same
model under the L� regression norm� although the proof is likely to be quite di�erent from
the one presented here	 A heuristic algorithm for solving the OPWLS problem under the L�
regression norm can be found in Hush and Horne ������	
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